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Abstract

Topological indices are real numbers related to graphs, They have many applications as tools for modeling chemical and
other properties of molecules. In this paper, we study new graphs called Spider’s web graph. Wiener index, Hyper-Wiener index,
Wiener polarity and the Schultz indices of Spider’s web graph have been computed. Furthermore, we found the correlation
between these topological indices of Spider’s web graph by some statistical parameters.
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1. Introduction

Chemical graph theory which is a fascinating branch of graph theory has many applications related
to chemistry. A topological index which is a numerical quantity derived from the chemical graph of a
molecule is used to modelling chemical and physical properties of molecules in quantitative Structure-
Property-Relationships (QSPR) and quantitative structure-activity relationships (QSAR) researches [1, 2, 7,
10]. Throughout this paper, we consider simple connected graphs (without loops and multiple edges). The
vertex and the edge sets of a graph G are denoted by V(G) and E(G), respectively. The degree of a vertex a
of G is denoted by δ(a). The distance between any two vertices a and b of G is denoted by dG(a,b), and it
is defined as the number of edges in a shortest path connecting the vertices a and b. The greatest distance
between any two vertices of G is called diameter of G and denoted d(G). Chemical graphs are models
of molecules in which atoms are represented by vertices and chemical bonds by edges of a graph. The
basic idea of chemical graph theory is that physicochemical properties of molecules can be studied using
the information. In the contemporary mathematico-chemical literature, there are exist several dozens
of vertex degree-based molecular structure descriptors. Zagreb coindices are a generalization of classical
Zagreb indices of chemical graph theory. A topological index is a real number related to a graph that must
be a structural invariant. Several topological indices have been defined and many of them have found
applications as means to model chemical, pharmaceutical and other properties of molecules [3, 4, 5, 6].
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The usage of topological indices in chemistry began in 1947 when a chemist Harold Wiener developed
the Wiener index and used it to determine physical properties of types of alkane known as paraffin [9].
In a graph theoretical language, the Wiener index W(G) of a graph G is equal to the count of all shortest
distances in a graph; that is

W(G) =
∑

a,b∈V(G)

d(a,b)

The Wiener polynomial is defined as follows [13, 15]:

W(G; x) =
∑

a,b∈V(G)

xd(a,b)

It is well known that, the first derivative of the Wiener polynomial evaluated at x = 1 equals the Wiener
index. Subsequently, other topological indices were introduced for a graph G. The Wiener polarity index
is defined as [12]: Wp(G) = d(G, 3); that is the number of unordered pairs of vertices {a,b} of G such
that dG(a,b) = 3. The Hyper-Wiener index [14, 16] of acyclic graphs was introduced by Milan Randic in
1993. Then Klein et al, generalized Randic’s definition for all connected graphs, as a generalization of the
Wiener index.

It is defined as follows:
WW(G) =

1
2

∑
a,b∈V(G)

d2(a,b) + d(a,b)

The First and Second Hyper-Zagreb indices are defined respectively as [8]:

M1(G) =
∑

ab∈E(G)

(δG(a) + δG(b)), M2(G) =
∑

ab∈E(G)

δG(a) δG(b)

The Schultz and modified Schultz indices and their polynomials are defined respectively as [8]:

W+(G) =
∑

a,b∈V(G)

(δG(a) + δG(b))d(a,b), W∗(G) =
∑

a,b∈V(G)

δG(a) δG(b)d(a,b)

W+(G; x) =
∑

a,b∈V(G)

(δG(a) + δG(b))xd(a,b), W∗(G; x) =
∑

a,b∈V(G)

δG(a) δG(b) xd(a,b)

Its clear that
W
′
+(G; 0) =M1(G), W

′
∗(G; 0) =M2(G),

W
′
+(G; 1) =W+(G), W

′
∗(G; 1) =W∗(G).

In 2012, Essalih, El-Marraki and Al-hagri [11] obtained the Wiener index of Spider’s web graph but
this paper, introduced several topological indices of Spider’s web graph, such as: Wiener index, Hyper-
Wiener index, Wiener polarity and Schultz indices by introducing a useful polynomials. Moreover, a
strong correlations between these topological indices of Spider’s web graph have been Appeared.

Define a Spider’s web graph Sn(m)−graph S = Sn(m), (n > 3,m > 2) as the union ofm cycles together
with n paths where;

C1
n = {u1

1,u1
2, · · · ,u1

n},C2
n = {u2

1,u2
2, · · · ,u2

n}, · · · ,Cm
n = {um1 ,um2 , · · · ,umn },

Pm1 = {u1
1,u2

1, · · · ,um1 },Pm2 = {u1
2,u2

2, · · · ,um2 }, · · · ,Pmn = {u1
n,u2

n, · · · ,umn }.

For instance a Spider’s web graph are illustrated below in Figures 1,2.
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Figure 1: Spider’s web

Figure 2: S24(9)

It is simple matter to verify that |V(S)| = mn and |E(S)| = n(2m− 1). Note that the case n = 2 is omitted
because S2(m) has parallel edges, whereas the case m = 1 is trivial since Sn(1) = Cn.

This paper is devoted to the computation of the preceding topological indices concerning the
Sn(m)−graph. After evaluating the diameter and the Wiener dimension S = Sn(m) in the second
paragraph, we begin our second paragraph by introducing a useful polynomial

F(x) =
∑

{u,v}⊆V(Sn(m))

F(u) ∗ F(v)xdS(u,v).

By considering different definitions of the star operation ∗, the polynomial F(x) enables us to derive
simultaneously all the previous topological indices for the graph Sn(m). Finally, an example of
application is exhibited to illustrate our study.
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2. Diameter and Wiener Dimension of Spider’s web graph

We start by some preliminary statements concerning two arbitrary vertices uhi and ukj of S = Sn(m). For
i, j ∈ {1, 2, · · · ,n} and h,k ∈ {1, 2, · · · ,m} :

(i) dS(u
h
i ,uki ) = |h− k|.

(ii) dS(u
h
i ,uhj ) =


|i− j| , if |i− j| 6 d(Cn)

n− |i− j| , if |i− j| > d(Cn)

(iii) dS(u
h
i ,ukj ) =


|h− k|+ |i− j| , if |i− j| 6 d(Cn)

|h− k|+n− |i− j| , if |i− j| > d(Cn)

where d(Cn) = n/2 when n is even and d(Cn) = (n− 1)/2 when n is odd.

Proposition 2.1: d(Sn(m)) = m− 1 + d(Cn).

Proof. Set d := d(Cn). Let uhi ,ukj be two arbitrary vertices of S = Sn(m).

If |i− j| 6 d, then ds(uhi ,ukj ) = |h− k|+ |i− j| 6 m− 1 + d. Let us assume that |i− j| > d+ 1. Then
ds(u

h
i ,ukj ) = |h− k|+n− |i− j|.

As d = n
2 when n is even and d = n−1

2 when n is odd, then n− d− 1 = d or d− 1. Thus

ds(u
h
i ,ukj ) 6 m− 1 +n− |i− j|

6 m− 1 +n− d− 1

6 m− 1 + d

Therefore,
d(Sn(m)) 6 m− 1 + d

Now, let umk be the vertex of Cm
n that satisfies d = ds(u

m
1 ,umk ). Then

ds(u
1
1,umk ) = ds(u

1
1,um1 ) + ds(u

m
1 ,umk ) = m− 1 + d.

Hence,
d(Sn(m)) = m− 1 + d.�

Our next result concerns the Wiener dimension of Sn(m). Recall that the Wiener dimension [1] of a
graph G, denoted dimWG, is the number of different distances of its vertices. But before embarking in
this direction, notice that the Wiener dimension of a cycle Cn is 1. Indeed, since all the vertices u ∈ Cn

have a common distance, namely

dCn
(u) =


n2

4 ,n even.

n2−1
4 ,n odd.
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Proposition 2.2: dimW(Sn(m)) =


m
2 ,m even.

m+1
2 ,m odd.

Proof. For convenience, we set S := Sn(m). Since dS(uki ) = dS(u
k
1 ), then the possible different

distances of vertices of S are among

{dS(u
1
1),dS(u

2
1), · · · ,dS(um1 )}.

We will evaluate dS(uk1 ) for each k ∈ {1, 2, · · · ,m}.

dS(u
k
1 ) =

∑
m
h=1

∑
u∈Ch

n
dS(u

k
1 ,u)

=
∑

m
h=1

∑
u∈Ch

n
dS(u

k
1 ,uh1 ) + dS(u

h
1 ,u)

=
∑

m
h=1(

∑
u∈Ch

n
|h− k|+

∑
u∈Ch

n
dS(u

h
1 ,u))

=
∑

m
h=1(n|h− k|+ dCh

n
(uh1 ))

= n[(1 + 2 + · · ·+ (k− 1)) + (1 + 2 + · · ·+ (m− k))] +mdCn
(u1

1)

= n
2 [(m− k)2 + (k− 1)2 +m− 1] +mdCn

(u1
1)

Note that
dS(u

k
1 ) − dS(u

h
1 ) = n(k− h)(k+ h−m− 1)

for h,k ∈ {1, 2, · · · ,m}. So dS(uk1 ) = dS(u
h
1 ) when h = k or h+ k = m+ 1. It follows that

{dS(u
1
1),dS(u

2
1), · · · ,dS(u

m
2

1 )}

is the set of different distances when m is even, and

{dS(u
1
1),dS(u

2
1), · · · ,dS(u

m−1
2

1 ),dS(u
m+1

2
1 )}

is the set of different distances when m is odd.

3. Topological indices of Spider’s web graph

We continue to set S := Sn(m). To compute different indices simultaneously, we introduce the follow-
ing function which will play a prominent role: Let F : S→ N be the function defined by

F(u) =


a , u ∈ V(C1

n

⋃
Cm
n )

b , u ∈
⋃m−1

h=2 V(C
h
n)

Let ∗ be an operation defined on {a,b} by the table
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∗ a b
a α β

b β γ

and consider the polynomial

F(x) =
∑

{u,v}⊆V(Sn(m))

F(u) ∗ F(v)xdS(u,v).

We will evaluate F(x) in terms of α,β,γ. To this end, we introduce two polynomials Ts(x) and Rs(x)
defined by

T0(x) = 0 , Ts(x) = sx+ (s− 1)x2 + · · ·+ 2xs−1 + xs, s > 1

R0(x) = 0 , Rs(x) = x+ x2 + · · ·+ xs, s > 1

It is easy to show that
Ts(x) + Rs+1(x) = Ts+1(x)

Lemma 3.1: For s > 1, Ts(x) =
∑

16h<k6s+1

xk−h.

Proof: For each t ∈ {1, 2, · · · , s}, define

Bt = {(h,k) ∈ {1, 2, · · · , s+ 1}2 : k− h = t}.

It is easy to show that |Bt| = s+ 1 − t. Therefore,

∑
16h<k6s+1

xk−h =

s∑
t=1

∑
(h,k)∈Bt

xt =

s∑
t=1

(s+ 1 − t)xt = TS(x). �

Proposition 3.2 :

F(x) = [αxm−1 + (2β− γ)Rm−2 + γTm−2](n+ 2W(Cn, x))

+(2α+ γ(m− 2))W(Cn, x).

Proof: We have F(x) = A+B+C, where A,B,C are evaluated separately below:

A =
∑

16h<k6m,i∈{1,2,··· ,n} f(u
h
i ) ∗ f(uki )xdS(u

h
i ,uk

i )

= n
∑

26h<k6m−1 γx
k−h +n

∑m−1
k=2 βx

k−1 +n
∑m−1

h=2 βx
m−h +αnxm−1

= nγ
∑

26h<k6m−1 x
k−h + 2nβ

∑m−1
k=2 x

k−1 +αnxm−1

= nγ(Tm−2 − Rm−2) + 2nβRm−2 +αnx
m−1

= αnxm−1 +n(2β− γ)Rm−2 +nγTm−2

= n(αxm−1 + (2β− γ)Rm−2 + γTm−2)
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B =
∑

h∈{1,2,··· ,m},16i<j6n f(u
h
i ) ∗ f(uhj )x

ds(u
h
i ,uh

j )

= α
∑

16i<j6n x
ds(u

1
i ,u1

j) +
∑m−1

h=2 γ
∑

16i<j6n x
ds(u

h
i ,uh

j ) +α
∑

16i<j6n x
ds(u

m
i ,um

j )

= 2αW(Cn, x) + γ(m− 2)W(Cn, x) = (2α+ γ(m− 2))W(Cn, x)

C =
∑

16h<k6m,i 6=j∈{1,2,··· ,m} f(u
h
i ) ∗ f(ukj )x

ds(u
h
i ,uk

j )

= 2
∑

16h<k6m,16i<j6n f(u
h
i ) ∗ f(ukj )x

ds(u
h
i ,uk

j )

Since
(dS(u

h
i ,ukj ) = dS(u

h
i ,uki ) + dS(u

k
i ,ukj ) = k− h+ dS(u

k
i ,ukj ))

= 2
∑

16h<k6m f(u
h
i ) ∗ f(ukj )xk−h

∑
16i<j6n x

ds(u
k
i ,uk

j )

= 2A
nW(Cn, x).

Thus, F(x) can be deduced by adding A,B and C. �

Theorem 3.3: W(Sn(m), x) = Tm−1(n+ 2W(Cn, x)) +mW(Cn, x).

Proof: Consider F : S = Sn(m) → N defined by F(u) = 1 for all u ∈ V(S), and let ∗ be the usual
multiplication. Then

α = β = γ = 1.

In this case, we have

F(x) =W(S, x) = (xm−1 + Rm−2 + Tm−2)(n+ 2W(Cn, x)) +mW(Cn, x)

= Tm−1(n+ 2W(Cn, x)) +mW(Cn, x). �

By differentiating W(Sn(m), x), we derive the values of W(Sn(m)) and WW(Sn(m)).

Corollary 3.4:

1) W(Sn(m)) = m2W(Cn) +
n2

6 m(m2 − 1).

2) WW(Sn(m)) = m2WW(Cn) +
1
3m(m2 − 1)W(Cn) +

n2

24m(m2 − 1)(m+ 2).

3) Wp(Sn(m)) = 3n(2m− 3).

Theorem 3.5:

W+(Sn(m), x) = (6Tm−1 + 2Tm−2)(n+ 2W(Cn, x)) + (8m− 4)W(Cn, x)

Proof: Consider F : S = Sn(m) → N the function defined by F(u) = δ(u), and let ∗ be the usual
addition. Then

α = 6,β = 7,γ = 8.
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In this case, we have

W+(S, x) = (6xm−1 + 6Rm−2 + 8Tm−2)(n+ 2W(Cn, x)) + (8m− 4)W(Cn, x)

= (6Tm−1 + 2Tm−2)(n+ 2W(Cn, x)) + (8m− 4)W(Cn, x). �

By differentiating W+(Sn(m), x), we obtain the values of M1(Sn(m)) and W+(Sn(m)).

Corollary 3.6:

1) W+(Sn(m)) = m(2m− 1)W+(Cn) +
n2

3 m(m− 1)(4m+ 1)

2) M1(Sn(m)) = 2n(8m− 7)

Theorem 3.7:

W∗(Sn(m), x) = (xm−1 + 8Tm−1 + 8Tm−2)(n+ 2W(Cn, x)) + (16m− 14)W(Cn, x)

Proof: Consider the function F : S = Sn(m) → N defined by F(u) = δ(u), and let ∗ be the usual
multiplication. Then

α = 9,β = 12,γ = 16.

In this case, we have

W∗(S, x) = (9xm−1 + 8Rm−2 + 16Tm−2)(n+ 2W(Cn, x)) + (16m− 14)W(Cn, x)

= (xm−1 + 8Tm−1 + 8Tm−2)(n+ 2W(Cn, x)) + (16m− 14)W(Cn, x). �

By differentiating W∗(S, x), we get the values of M2(S) and W∗(S).

Corollary 3.8:

1) W∗(S) = (2m− 1)2W∗(Cn) +
n2

3 (m− 1)(8m2 − 4m+ 3)

2) M2(S) = 2n(16m− 19)

We end this work by an example of application.

Example 3.9: Let S := S4(4). Then

1. d(S) = 5 , dimW(S) = 2.

2. W(S : x) = 28x+ 40x2 + 32x3 + 16x4 + 4x5.

3. W+(S : x) = 200x+ 280x2 + 224x3 + 104x4 + 24x5.

4. W∗(S : x) = 360x+ 516x2 + 388x3 + 168x4 + 36x5.

5. W(S) = 288 , WW(S) = 560 , Wp(S) = 60.

6. W+(S) = 1984 , M1(S) = 200.

7. W∗(S) = 3408 , M2(S) = 360.
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Table 1: Topological indices of Spider’s web graph
(n,m) M1 M2 W WW W+ W∗

(3 , 3) 102 174 63 96 177 1278
(3 , 4) 150 270 138 243 418 2799
(3 , 5) 198 366 255 510 810 5112
(3 , 6) 246 462 423 948 1389 8361
(4 , 3) 136 232 136 234 896 2496
(4 , 4) 200 360 288 560 1984 6192
(4 , 5) 264 488 520 1130 3680 12576
(4 , 6) 328 616 848 2040 6112 22416
(5 , 3) 170 290 235 425 625 5130
(5 , 4) 250 450 490 995 1410 10545
(5 , 5) 330 610 875 1975 2650 18240
(5 , 6) 410 770 1415 3520 4445 28455

Table 2: Correlation between topological indices of Spider’s web graph
r M1 M2 W WW W+ W∗

M1 1.000000 0.999185 0.972662 0.962192 0.830710 0.973015
M2 0.999185 1.000000 0.969683 0.960472 0.834101 0.971030
W 0.972662 0.969683 1.000000 0.998185 0.804334 0.984969
WW 0.962192 0.960472 0.998185 1.000000 0.805326 0.982561
W+ 0.830710 0.834101 0.804334 0.805326 1.000000 0.886309
W∗ 0.973015 0.971030 0.984969 0.982561 0.886309 1.000000

4. Possible applications of Spider’s web graph

In combinatorial chemistry, so-called topological indices are used for the description of the structural
properties of molecular graphs. If we consider each vertex in Spider’s web graph to be a carbon atom
(the valence of carbon atom is equal four), possible this a graph is chemical graph, since it is a connected,
planar and the degree (valence) of every vertex (atom) in this graph is not more than four. In other side,
by above definition of a Spider’s web graph, it is an union of paths (alkanes ) together with cycles (
cycloalkanes) that is mean we can study the properties of Spider’s web graph from its initial compounds
( alkanes and cycloalkanes). By general, there is no theoretical result on the correlation between the
different indices yet, thus should be natural to study some strong correlation between them, since they
all reflect the structural properties of graphs in some way [17]. This section tries to fill this gap a little
by proposing measures for the correlation of two indices and discussing them. Then we choose the best
topological index to use for the description of the structural properties of Spider’s web graph. Table 1
shows some topological indices (first Zagreb index, second Zagreb index, Wiener index, Hyper Wiener
index, Schultz index and Gutman index) of the spider diagram resulting from the union of alkanes
P3,P4,P5 with cycloalkanes C3,C4,C5,C6. Note: In general, it is possible to calculate the topological
indices for the spider web from any group of alkanes with a group of cycloalkanes using the program in
the appendix (where we designed it using the MATLAB program). According to Table 2, all topological
indices considered are a strong correlated where 0.80 6 r 6 1. Therefore, we can use these indices to
properties of Spider’s web graph that result from two chemical groups alkanes with cycloalkanes. Also,
we conclude among the topological indices we considered, the three best correlation coefficients between
first Zagreb index, second Zagreb index (r = 0.999185), and then between Wiener index, Hyper Wiener
index (r = 0.998185), and then between Wiener index, Gutman index (r = 0.984969).
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5. Concluding Remarks

Several articles are concerned the calculations of topological indices for different types of graphs.
Some of them have found applications, but others were devoted to the mathematical side in order to
throw more light on the relationship between these various concepts. In this paper, we computed some
topological indices of new graphs called Spider’s web. Moreover, we found a strong correlation between
these indices of Spider’s web graph. this paper open a wide window for other researches on Spider’s web
graph such as some other topological indices or their coindices.
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